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Abstract

This paper presents a new low-level communication sub-
system called Nemesis. Nemesis has been designed and im-
plemented to be scalable and efficient both in the intranode
communication context using shared-memory and in the in-
ternode communication case using high-performance net-
works and is natively multimethod-enabled. Nemesis has
been integrated in MPICH2 as a CH3 channel and de-
livers better performance than other dedicated communi-
cation channels in MPICH2. Furthermore, the resulting
MPICH2 architecture outperforms other MPI implementa-
tions in point-to-point benchmarks.

1 Introduction
Computationally intensive applications, such as simula-

tions and modeling, require a large amount of computing
power that can solely be delivered by parallel architectures.
Efficiently programming parallel machines remains a diffi-
cult challenge because of the variety of available hardware:
Massively parallel processors, SMPs, ccNUMA machines,
and clusters all fall into this category. The design and de-
velopment of dedicated environments, tools, and libraries
are therefore the cornerstone of the successful exploitation
of this kind of architecture. These technologies should be
portable and yet be able to narrow the gap between the hard-
ware’s capabilities and the actual performance delivered to
the application. The Message Passing Interface standard has
been defined to address these portability and performance
issues. The performance level, however, remains largely
implementation-dependent. Hence, implementing the MPI
specification in a fast and efficient fashion remains the fo-
cus of attention of many research groups. Moreover, other
key characteristics besides performance must be taken into
account in order to reflect the hardware trends. Scalability,
communication hierarchy (for instance, intranode vs intern-
ode communication, high-performance networks vs regular
networks) as well as the development of multinetwork en-
vironments should also be considered and raise new issues.
Indeed, multirail systems or architectures featuring several
different networks such as the IBM BlueGene/L bring new
challenges for MPI developers. Open source MPI projects
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under development include YAMPII [14], Open MPI [7],
and MPICH2 [10]. In particular, the goal of MPICH2 is
to provide an efficient MPI-2 implementation for massively
parallel processors, SMPs, and clusters (small- and large-
scale alike).

A careful analysis of several MPICH2 communication
channels underscores the fact that the performance level
could be dramatically enhanced. We therefore designed
and implemented a new communication subsystem, called
Nemesis, the goal of which is to address these performance
issues while being scalable and natively supporting multi-
method communication. This communication subsystem
can be a stand-alone piece of software, but it is a relevant
target to be the basis of higher-level programming tools. As
such, it has been successfully integrated within MPICH2 as
an CH3 channel and yields very good performance.

Section 2 explains the design of our new communica-
tion subsystem. Section 3 describes some implementation
issues we addressed that are crucial for achieving good per-
formance. Section 4 presents our performance evaluation
of Nemesis. We show comparisons between the MPICH2
channel implementation of Nemesis and other MPICH2
channels and other MPI implementations. Section 5 con-
cludes this paper and discusses future work.

2 Design of the Nemesis Communication
Subsystem

We designed Nemesis to be a high-performance com-
munication subsystem for MPICH2 [10]. Our primary
design goals, in order of priority, were scalability, high-
performance intranode communication, high-performance
internode communication, and multimethod internode com-
munication. We ranked the design goals in order of prior-
ity to help us resolve conflicts between these goals as they
arise. In this section we describe our design by first giv-
ing a general overview, then giving more detail on the basic
queue mechanism and network modules.

Our design started with a shared-memory queue for scal-
able and efficient intranode message passing. To this we
added network modules that interface with the queue mech-
anism, providing a unified method for sending and receiv-
ing messages. We designed the network modules around
the queue mechanism, rather than the other way around, in
order to get the best performance for intranode communi-
cation. This design also allows us to add multiple network
modules to support multimethod internode communication.
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Figure 1. Block diagram of Nemesis design
showing one node with three processes.

Figure 1 shows the basic design. The figure depicts three
processes in a node. The processes communicate using
lock-free queues. The network modules are used to commu-
nicate with processes on other nodes. Messages received by
the network modules are queued on the process’s lock-free
queue. In this way the process only has to poll one queue to
receive messages from any process on any node.

We address two shared-memory models. A small-scale
shared-memory model, such as an SMP workstation run-
ning Linux, is characterized by each node having a rela-
tively small number of processors and a software environ-
ment in which the processes create and attach to shared-
memory regions in order to be able to communicate using
shared memory. A large-scale shared-memory model, such
as a ccNUMA machine, is characterized by each node hav-
ing a relatively large number of processors and a software
environment in which the processes access the memory of
other processes without the memory having to be in a spe-
cial shared-memory region or having to attach to the mem-
ory region first.

2.1 Intranode Communication
Intranode communication in Nemesis is performed by

using lock-free queues in shared memory. Our design goal
here was for each process to have a single receive queue that
it needs to poll, rather than having a separate receive queue
to poll for each remote process. Having only one queue to
poll makes the design very scalable.

Our design comprises three variations. Each process has
a receive queue; and, depending on the variation, there is
either one free queue per process or one global free queue.
Figure 2 shows how a messages is sent by one process and
received by another. The figure shows the design variation
where free queues are located at sending processes. The
sending process (1) dequeues a queue element from the free
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Figure 2. Block diagram of send and re-
ceive using shared-memory queues with free
queues located at sender.

Enqueue (queue, element) {
prev = SWAP (queue->tail, element);
if (prev == NULL)
queue->head = element;

else
prev->next = element;

}
Dequeue (queue, &element) {
element = queue->head;
if (element->next != NULL)
queue->head = element->next;

else {
queue->head = NULL;
old = CAS (queue->tail, element, NULL);
if (old != element) {
while (element->next == NULL)
SKIP;

queue->head = element->next;
} } }

Figure 3. Lock-free algorithm, using atomic
swap (SWAP) and compare-and-swap (CAS)
operations.

queue, (2) fills the queue element with the message, and
(3) enqueues it on the receiving process’s receive queue.
The receiving process then (4) dequeues the element from
its receive queue, (5) handles the message, and (6) enqueues
the queue element back onto the same free queue where it
had originally been dequeued.

In the small-scale memory model, the receive and free
queues and their elements all have to reside in shared-
memory regions accessible by all of the processes. This
makes adding queues and elements dynamically difficult,
so the queues and elements have to be allocated at initial-
ization time. For the large-scale memory model, however,
processes need not specifically attach to a region of mem-
ory to access it, queues and elements can easily be added
dynamically.

2.1.1 Design Variations
The three variations of the design change the location of the
free queue. In the first variation, there is one global free
queue from which every process will dequeue elements. In
the second variation, each process has a free queue that
other processes will dequeue from when sending to it. In
the third variation, each process has a free queue that it will
dequeue from when sending messages to other processes.
For a more detailed discussion of the advantages and disad-
vantages of the variations, see [5].

2.1.2 Implementation
Our current implementation of Nemesis uses the third de-
sign variation. This design variation uses the same type
of lock-free queues for both the receive queue and the free
queue, namely, a lock-free queue that allows multiple en-
queuers and a single dequeuer concurrently.

The lock-free queue algorithm we use is similar to the
MCS lock [8] using swap and compare-and-swap atomic
operations. The pseudo-code for the algorithm is given in
Fig. 3. The queue has a head and a tail. To enqueue an
element, the process atomically swaps the pointer to the el-
ement with the value of the tail of the queue. If the previous
value of the tail was NULL, indicating that the queue was
empty, the process sets the head to point to the element also.
If the queue was not empty, the process sets the next pointer
of the previous element to point to the new element.

To check whether the queue is empty, a process can sim-
ply check whether the head of the queue is NULL. To de-
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queue an element, the process gets a pointer to the element
at the head of the queue. If that element has a non-NULL
next pointer, the process sets the head of the queue to point
to that next element, and the dequeue operation is com-
plete. If the next pointer is NULL, however, then we have
to deal with a potential race condition. It’s possible that an-
other process has started enqueuing an element and has per-
formed the swap of the queue tail but has not yet set the next
pointer of the element we are dequeuing. In this case the
dequeuing process sets the queue head to NULL, then per-
forms a compare-and-swap on the queue tail pointer, swap-
ping it with NULL only if the queue tail is still pointing
to the element that is being dequeued. If the compare-and-
swap succeeds in swapping the queue tail pointer, then no
other process is trying to enqueue, and the dequeue oper-
ation is complete. If it does not succeed, another process
is performing an enqueue operation, so the dequeuing pro-
cess waits, polling on the next pointer, until the enqueuing
process finishes enqueuing and sets the next pointer of the
element being dequeued. The dequeuing process then com-
pletes the dequeue operation by setting the queue head to
point to the newly enqueued element. The implementation
of the lock-free queue algorithm proved to be very efficient:
only six instructions are required for an enqueue operation,
and only 11 instructions are required for a dequeue opera-
tion.

We currently have an implementation of Nemesis on a
Linux ia32 platform. In this implementation, one process
on each node allocates a shared-memory region that holds
the free and receive queues of all the processes. The other
processes map this shared-memory region into their address
space. Each process keeps an array of pointers to the receive
and free queues of all the other processes. Because the re-
gion might not be mapped into the same address on all the
processes, the pointers into this region are implemented as
offsets rather than absolute pointers. Using offsets means
that accessing a pointer requires performing an extra trans-
lation, but the impact on the overall performance is negligi-
ble.
2.2 Internode Communication

To the shared-memory intranode communication mech-
anism described in the previous section, we add internode
communication using network modules. The interface be-
tween a process and its network module is the same as be-
tween two processes on the same node: Each network mod-
ule has a send queue, which is analogous to a process’s re-
ceive queue, and a free queue. Messages to be sent over the
network are queued on the network module’s send queue
using elements from the process’s free queue. The network
module dequeues messages from its send queue and trans-
mits them over the network. Messages received from the
network are queued on the process’s receive queue using
elements from the network module’s free queue.

2.2.1 Implementation
In the same way that a process keeps an array of pointers
to the receive and free queues of the other processes on the
same node, it also has entries in this array for processes on
remote nodes, except that the receive and free queue point-
ers for a remote node point to the send and free queues of the
network module. The network module determines which
remote process to send the message to by examining the
header of the message. In this way, the code for a process to
send intra- and internode messages is the same, making the

critical path very efficient: The process dequeues and fills a
free queue element, dereferences the pointer to the receive
queue for the target process, then enqueues it on that queue.
The only difference is that in the internode case, when the
process gets a pointer to the “receive” queue, it is a pointer
to the network module’s send queue. Similarly, because the
network module enqueues received messages on the pro-
cess’s receive queue, receiving messages from processes on
remote nodes is the same as receiving messages from pro-
cesses on the same node.

The network’s free queue entries must be allocated in the
shared-memory region, even though the entries will be used
only within the same process. The reason is that when the
network module queues an entry on the process’s receive
queue, if another process tries to enqueue an element after
it, that process will need to be able to set the next pointer of
the network module’s element.

In order for the network module to make progress send-
ing messages on its send queue and receiving messages into
the process’s receive queue, the process periodically calls
the network module’s poll function.

When using user-level OS-bypass networks that require
registration of send and receive buffers, memory copies can
be avoided in the network module when sending messages
by registering all of the process’s free queue entries. Hence,
when the process enqueues a message on the network’s send
queue, the network module can transmit the message di-
rectly from the queue entry, rather than copying it to a pre-
registered send buffer. Similarly, memory copies can be
avoided when a message is received, by registering all of
the network module’s free queue entries, then dequeuing
the entries and posting them as receive buffers with the net-
work. Hence, incoming messages are received directly into
the queue entries, which can then be queued on the pro-
cess’s receive queue. As queue entries are returned to the
network module’s free queue, they are again posted as re-
ceive buffers with the network.

For user-level networks that require specially registered
send and receive buffers but cannot use this method, for
example if the network doesn’t support the registration of
shared memory, memory copies can still be avoided when
receiving a message. An incoming message is received into
one of the network module’s receive buffers; then the queue
entry that is queued on the process’s receive queue includes
a pointer to the receive buffer containing the message, rather
than the message itself. Receive buffers are reused when the
process returns the queue element referencing the buffer to
the network’s free queue. Note that this method requires the
process to take special action when sending through a net-
work module to a process on a different node, adding more
complexity to the critical path.

Avoiding a copy on the send side may be more difficult.
If the data is contiguous, then the send queue entry would
contain a pointer to the data along with the message header.
The network module would then copy the header and the
data to the registered send buffer. Rather than performing
the memory copy from the user buffer into the queue en-
try, the data is copied from the user buffer into the network
module’s registered send buffer. However, the data to be
sent may be arranged as a complex noncontiguous datatype.
Two main issues must be addressed in handling this case.
First, adding the ability to handle datatypes to the network
module would increase its complexity, and second, the de-
scription of the datatype may be larger than the size of the
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queue entry. Our current implementation would simply per-
form an additional copy in this case. We intend to examine
ways of optimizing this in the future.

2.2.2 Multiple Network Support
Supporting multiple network modules allows one network,
for instance GM, to be used for intracluster communication
and another network, for instance TCP, to be used for inter-
cluster communication. Because of the modularity of our
design, additional network modules can be easily added.
All that is needed to support multiple network modules is
to have the process call the poll function for each module
and to set the pointers appropriately in the process’s arrays
of receive and free queue pointers.

Networks that require registration of send and receive
buffers most likely will not allow different networks to reg-
ister the same page, so only one network will be able to
register all of the queue elements. We refer to this network
as the primary network. The other networks may have to
use the alternative mechanism described above, using point-
ers to receive buffers and performing an additional copy on
the send. These are the secondary networks. Note that not
all secondary networks need to perform extra copies, only
those that require registration of send and receive buffers.
TCP, for example, can send and receive directly to and from
queue and so does not need to perform extra copies.

When the networks are arranged hierarchically, where
one network is being used for intracluster communication
and the other for intercluster communication, generally the
intracluster network will be the primary network and the in-
tercluster network the secondary network. The intercluster
network will most likely have higher latencies because it
is a lower-performance network or because of the distance
to the other cluster, and so will most likely not benefit as
much as the primary network will from the ability to reduce
copies.

2.3 Remote Memory Access
Nemesis also supports remote memory access (RMA)

operations. An RMA operation allows one process, the ini-
tiator process, to access variables stored in the address space
of another process, the target process. RMA operations are
often called one-sided operations because, the initiator pro-
cess supplies all the arguments of the operation. Nemesis
currently supports Get and Put RMA operations on con-
tiguous and noncontiguous data. Noncontiguous data is de-
scribed by using an array of address and length pairs.

2.3.1 Design
There is one interface for performing RMA operations
using shared memory and another using networks. The
shared-memory interface is based on the concept of a win-
dow. A window is a region of a process’s memory in which
other processes can perform RMA operations. When a pro-
cess wants to allocate memory that may be used for shared-
memory RMA, it allocates a window. Before another pro-
cess can perform an RMA operation on the window, the
window description must be sent to that process, which then
attaches to that window.

For RMA operations performed over networks, any
memory to be used in a RMA operation must be registered.
The registration operation returns a key for the registered re-
gion. This key is sent to any process that will perform RMA
operations on that memory. The initiator process then uses

the key as a parameter to any RMA operations on that mem-
ory region.

The window-based RMA operations are blocking oper-
ations: When the function returns the operation has com-
pleted. The network-based RMA operations are nonblock-
ing. The RMA operations are passed a pointer to a comple-
tion counter, which is set to a value greater than zero when
the operation is initiated. When the operation is complete,
Nemesis will set this value to zero. The application is re-
quired to call a Nemesis communication function or the poll
function in order to guarantee that the nonblocking RMA
operations complete. Depending on the network and the
implementation of the network module, the target process
may also have to call Nemesis communication functions or
poll in order to guarantee that the operation completes.

2.3.2 Implementation
In our implementation on a Linux ia32 platform, when a
process allocates a window, a shared-memory file is created
and mapped into the process address space. The window de-
scription contains the name of this file as well as the address
of this region in the process’s address space. When another
process attaches to this window, it maps the corresponding
file into its address space. Because the initiator process may
not map the region at the same address as the target process,
the address of an object in the window may not be the same
at the initiator as at the target. For this reason, the RMA
interface specifies that addressees passed to RMA functions
should be addresses in the target’s address space. In fact the
initiator does not need to know where the window has been
mapped into its address space. The RMA operation at the
initiator process will translate the target pointer into the ad-
dress in the initiator’s address space before performing the
operation.

Some networks, such as InfiniBand [1], require memory
keys from the target process to be passed to the initiator pro-
cess, while others, such as GM [11], do not. The Nemesis
memory registration key can be used by the network mod-
ule to pass such information. If the network does not require
the use of keys, then the key description that is sent from
the target to the initiator can be empty. The RMA opera-
tions are implemented by using the network’s native RMA
operations.

The Nemesis registration function will register the mem-
ory only with the primary network. For secondary net-
works that require memory registration and networks that
do not support RMA operations, the RMA operations are
performed by using the message queue mechanism.

3 Optimizing Nemesis
We applied several optimizations to the basic design in

order to improve performance. We first focus on intranode
communication and then describe internode communication
mechanisms that we implemented in Nemesis.
3.1 Reducing L2 Cache Misses

L2 cache misses are unavoidable when processes on dif-
ferent processors are accessing the same memory locations.
Because Nemesis is designed around the shared-memory
message queues, and L2 cache misses are very costly (over
400 cycles, or 200 ns on a dual 2 GHz Xeon node), it is
critical to eliminate unnecessary L2 cache misses when ac-
cessing the head and tail pointers of the queues.

A process must access both the head and tail of the queue
when it is enqueuing an element on an empty queue or when
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it is dequeuing an element that is the last element in the
queue. In these cases, if the head and tail were in the same
cache line, only one L2 cache miss would be encountered.
If the queue has more elements in it, however, then the en-
queuer only needs to access the tail, and the dequeuer only
needs to access the head. If the head and tail were in the
same cache line, then there would be L2 misses encountered
as a result of false sharing each time a process enqueues
an element after another has been dequeued from the same
queue, and vice versa. In this case it would be better if the
head and tail were in separate cache lines.

Our solution is to put the head and tail in the same cache
line and have a shadow head pointer in a separate cache line.
The shadow head is initialized to NULL. The dequeuer uses
the shadow head in place of the real head except when the
shadow head is NULL, meaning that the queue has become
empty. If the shadow head is NULL when the dequeuer
tries to dequeue, it checks the value of the real head. If
the real head is not NULL, meaning that an element has
been enqueued on the queue since the last time the queue
became empty, the dequeuer initializes its shadow head to
the value of the real head and sets the real head to NULL.
In this way, only one L2 cache miss is encountered when
enqueuing onto an empty queue or dequeuing from a queue
with one element. And because the tail and shadow head are
in separate cache lines, there are no L2 cache misses from
false sharing.

We found that using a shadow head pointer reduced one-
way latency by about 200 ns on a dual 2 GHz Xeon node.

3.2 Bypassing Queues for Intranode Communica-
tion

Latency can be further improved by bypassing the queue
mechanism using fastboxes. A fastbox is simply a single
buffer with a full/empty flag. If the fastbox is empty, a pro-
cess will put the message into the fastbox and set the flag to
full, rather than use the queue. The receiver will first check
whether the fastbox is full before checking the queue. After
the receiver processes the message, it sets the flag to empty.
There is one fastbox per pair of processes on a node.

While this approach isn’t a scalable for large shared-
memory machines, it can be used for clusters of small SMP
machines, which make up many modern clusters. Even for
large shared-memory machines, fastboxes can be used only
between nearest neighbors or can be created dynamically
between processes depending on the communication pat-
tern.

One problem introduced with fastboxes is that while
there is only one queue to poll on, adding fastboxes means
that the receiver has to check multiple fastboxes. We ad-
dress this problem by noting that in message-passing sys-
tems, the application is required to specify the sender when
requesting to receive a message. Nemesis provides a func-
tion to specify which processes to expect messages from.
The middleware library can use this function whenever the
application posts a receive. Nemesis will then poll those
fastboxes. To handle wildcard receives, where an applica-
tion will receive a message from any process, Nemesis will
poll every fastbox, but less frequently, to minimize the im-
pact of the additional polling on receiving other messages.

Another issue is message ordering. There are now two
paths between a sender and a receiver: the queue and the
fastbox. A sender may have enqueued a message on the
queue and sent the next message in the fastbox. Before us-

ing the fastbox, the sender has no way of knowing whether
the receiver has received the message in the queue. Simi-
larly, before checking the fastbox, the receiver has no way
of knowing whether there are any messages somewhere
in the queue from that particular receiver. If the receiver
checks the fastbox before it checks the queue, it will receive
the messages in the wrong order. This situation is handled
in Nemesis by using sequence numbers. When the receiver
checks the fastbox, if the sequence number of the message
in the fastbox is not the expected one, it knows there is at
least one message sent before this one on the queue, and it
leaves the message in the fastbox. On the other hand, when
the receiver checks the queue and the sequence number of
the message is not the expected one, it knows that the ex-
pected message is in the fastbox, and it checks there.

We found that when fastboxes are used, the one-way la-
tency is reduced by about 500 ns on our testbed.

3.3 Improving Memory Copies
The standard libc memcpy() routine did not perform

optimally in our tests. In [4], we analyzed several memory
copy functions for the Linux ia32 architecture and found
that using the assembly string copy functions was optimal
for messages up to 2 KB and using a memory copy using
MMX instructions was optimal for larger messages. The
MMX copy function increased the bandwidth by around
400 MBps on our testbed.

3.4 Bypassing the Message Queues for Internode
Communication

We bypass the queues on the send side in order to save on
instructions and latency. Instead of enqueuing a message in
the receive queue and then calling the progress routine that
has to dequeue it to send it, if the network module’s send
queue is empty, we directly send the message. Our origi-
nal design goal was to simplify the critical path for shared-
memory and avoid having to check whether a messages was
an intra- or internode message. However, we found that the
added cost of performing this check on intranode messages
was negligible, while the benefit to internode messages was
about 500 ns using the GM network module and several mi-
croseconds when using TCP.

3.5 Optimizing the TCP Network Module
In the TCP module, we receive a Nemesis packet by first

receiving the Nemesis header, from which we can deter-
mine the size of the rest of the packet; then we receive the
rest of the packet. This approach allows us to receive a sin-
gle packet directly into a free queue element. The downside
is that two read system calls are required to receive each
packet. We optimize by receiving the header, plus some
small amount of the data in the first call to read. Then
we check the header for the packet length, and only if we
haven’t received the entire packet do we call read to re-
ceive the rest of the packet. This way, small packets can be
received by using one read call. If the packet was smaller
than the amount we initially received, we have received part
of the next packet. In this case, we copy the portion of the
next packet to another free queue element.

When implementing the Nemesis channel for MPICH2,
we set the additional amount received to be the MPICH2
header length (currently 32 bytes), plus an additional
amount of the payload (currently 16 bytes). We note that
nonblocking operation are used on both the sending and the
receiving sides: We don’t switch back and forth between
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blocking and nonblocking modes as in LAM/MPI for in-
stance.

4 Performance Evaluation of Nemesis
In this section, we present preliminary results obtained

with the Nemesis communication subsystem. To compare
Nemesis to other communication subsystems, we imple-
mented an MPICH2 CH3 channel using Nemesis. We then
compared the performance of the Nemesis channel to other
MPICH2 channels at the MPI-level. The other channels we
compared were the shm channel for shared-memory (intra-
node communication), the sock channel for TCP, and the
GASNet channel for Myrinet. We also compared the re-
sulting new MPICH2 software stack with other MPI imple-
mentations in order to demonstrate the relevance of our ap-
proach. We measured latency and bandwidth for both intra-
and internode communication. In the latter case, we eval-
uated the Nemesis performance on two high-performance
networks: Myrinet, with the GM [11] interface, and giga-
bit Ethernet, with the TCP protocol. The other MPI imple-
mentations considered were Open MPI v1.0 [7], MPICH-
GM [9], LAM/MPI [6, 13], and YAMPII [14]. MPICH2
was compiled with the -enable-fast option that dis-
ables the error checking in MPICH2 code making it faster.
All tests were performed by using dual-SMP 2 GHz Xeon
nodes with 4 GB of memory. The operating system was
Linux with a 2.6.10 kernel. For the interconnects, we used
a Myrinet 2000 [2] “PCI64C” NIC connected to a 32-port
switch using the GM [11] message-passing system, version
2.0.21. The NIC was installed in a 64-bit 66 MHz PCI slot.
We also used an Intel 82544GC Gigabit Ethernet Controller
installed in the same type of PCI slot. In this paper we con-
sider one megabyte as 1024 × 1024 bytes.

4.1 Intranode Communication Performance
When an MPI application is executing, the fastest com-

munication is expected to happen between processes be-
longing to the same physical node, since shared-memory
performance is still quite a bit higher than that of current
high-performance networks. Achieving the fastest intran-
ode communication is therefore crucial. For comparisons
with other MPICH2 CH3 channels, we chose to test Neme-
sis against the shared-memory (shm) channel, which is the
fastest device for intranode communication in the current
MPICH2 release. We also compared our software with
other MPI implementations: LAM/MPI, Open MPI, and
MPICH-GM. MPICH-GM was included in this test because

its intranode communication mechanisms are fast and in-
deed relevant for our study. YAMPII was excluded because
it doesn’t support fast intranode communication: in the cur-
rent release, it is handled through the loop-back capabilities
of the Ethernet NIC. We used Netpipe [12] to perform the
latency and bandwidth tests.

4.1.1 Latency and Bandwidth
Figure 4 presents the MPI latency for messages smaller than
64 bytes. The first comparison that we make is between
the shm and Nemesis channels and shows that Nemesis is
roughly 25% faster than shm. Comparisons with other MPI
implementations are also favorable to us: aside from the 0
byte message case, where LAM/MPI is the most efficient,
MPICH2 using Nemesis offers the best latency. The next
closest implementation to MPICH2:Nemesis is LAM/MPI,
followed by MPICH-GM and then Open MPI. We note that
Open MPI’s latency is twice as high compared to that of the
three other solutions.

Bandwidth curves are shown in Fig. 5. For messages
smaller than 48 KB, MPICH2:Nemesis offers the best band-
width and even outperforms the efficient mechanisms im-
plemented within MPICH-GM. LAM/MPI yields better re-
sults than MPICH2:Nemesis for messages between 48 and
192 KB, but this result can’t be sustained for larger mes-
sages because it is caused by the amount of L2 cache avail-
able on the node. However, this performance gap between
LAM/MPI and MPICH2:Nemesis is limited and not very
large, about 15% at most. The situation is quite different
for very large messages (i.e., more than 192 KB) because
the bandwidth of MPICH2:Nemesis is almost twice that of
other MPI implementations. We managed to sustain such a
result that is influenced by the optimized memcopy routine
employed (see Section 3.3) along with careful tuning of the
MPICH2:Nemesis software stack.

4.1.2 Instruction Count
To assess performance accurately, we include the instruc-
tion count for intranode communication. We present only
the comparison between the Nemesis and shm MPICH2
channels so we can make fair comparisons and show the
improvement allowed by our new communication subsys-
tem, since the upper layers are similar in both cases. Our
test is restricted to a simple case: the number of instructions
needed to perform a blocking send and a blocking receive
on the MPI_COMM_WORLD communicator. In this case, the
message is 8 bytes long (a double on a 32-bit machine). To
measure these counts, we used the PAPI [3] software library
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that offers a convenient interface to gather such results. Our
test program consists of two processes exchanging the dou-
ble for 10,000 iterations. Before a call to MPI_Recv is is-
sued, a call to the usleep routine is performed in order to
make sure that the message is actually available. By doing
so, we eliminate the instructions that are used to perform
polling, which is variable.

The following table shows the results obtained:

Instruction count Shm Nemesis Improvement
MPI_Send 446 278 37%
MPI_Recv 1233 815 34%
Total 1679 1093 35%

This data confirms that sending and receiving messages
with MPI are two very different operations performance-
wise. Comparison between the shm and the Nemesis chan-
nels shows that we reduced the number of instructions by
roughly 35%. We also note that sending an 8-byte message
with MPICH2:Nemesis is fast, taking less than 300 instruc-
tions.

4.2 Internode Communication Performance
In this section, we evaluate communication involving

network transfers. Even though we carefully designed the
Nemesis communication subsystem to be highly efficient in
the intranode case, the internode communication has also
received considerable attention. Hence we can present a
new solution tailored to a wide range of architectures. We
have developed two network modules for Nemesis: the TCP
module and the GM/Myrinet module (our Myrinet hardware
does not support the MX software). The results of both
modules are presented in the following sections. We plan
to develop other modules, to take advantage of newer inter-
faces or new hardware, for instance InfiniBand or Quadrics.

4.2.1 Performance over Myrinet
The first high-performance network we tested was Myrinet.
New networking technologies might have emerged in the
past few years, but Myrinet still remains a popular intercon-
nect for cluster building. Figures 6 and 7 show the com-
parison between Nemesis and GASNet channels, as well
as LAM/MPI, Open MPI, and MPICH-GM. The best la-
tency is offered by MPICH-GM (except for 10-byte mes-
sages, where a peak happens that we cannot explain), fol-
lowed by MPICH2 using the Nemesis channel and then the
GASNet channel. We note that the GASNet channel’s per-
formance for messages smaller than 8 bytes is slightly bet-
ter than that of Nemesis. Open MPI’s latency is larger than

MPICH2:GASNet but eventually outperforms this channel
for messages larger than 56 bytes. LAM/MPI’s latency is
better than Open MPI’s for small non-null messages and
then lags a little bit behind for messages larger than 18
bytes.

As for bandwidth, the Nemesis channel performs well
for messages smaller than 24 KB and offers the best band-
width, but all implementations show similar results. For
messages between 24 and 512 KB, both Open MPI and
MPICH:Nemesis yield a lower bandwidth than the other
software tested. However, MPICH2:Nemesis performs
slightly better than Open MPI, and the drop in performance
indicates the threshold size that is used to switch between
eager and rendezvous protocol (that is, 64 KB). The other
MPI implementations (LAM/MPI, MPICH2:GASNet, and
MPICH-GM) have similar results. For messages larger
than 512 KB, MPICH2:Nemesis has higher bandwidth than
any other software, including MPICH-GM. We can actually
see three groups for performance: MPICH2:Nemesis and
MPICH-GM which perform better than MPICH2:GASNet
and LAM/MPI, and Open MPI, which doesn’t manage to
sustain its performance for messages larger than 512 KB
(after this size, the bandwidth drops and stabilizes around
180 MBps).

4.2.2 Performance over Gigabit Ethernet
The last performance comparison was performed over gi-
gabit Ethernet. Figure 8 shows the latencies for both the
Nemesis and sock channels for MPICH2, as well as the per-
formance of LAM/MPI, Open MPI, and YAMPII. We can
see that the best results are achieved by MPICH2:Nemesis
and LAM/MPI, which feature latencies that are very close.
They are followed by MPICH2 using the sock channel
and YAMPII. The Open MPI results are surprising because
there is a large gap with the other software. Indeed, Open
MPI offers a latency that is 50% higher than LAM/MPI or
MPICH2:Nemesis.

In Fig. 9 we see that the Nemesis channel delivers the
best bandwidth, along with LAM/MPI and MPICH2:sock
for messages smaller than 4 KB. YAMPII and Open MPI
are a little bit behind. As in the Myrinet case, we can
see that medium-sized messages (i.e., messages between 4
and 128 KB) is where MPICH2:Nemesis yields its worst
performance: while still on par with other implementa-
tions, the Nemesis channel is less efficient than other soft-
ware. For large messages, however, the situation is differ-
ent. MPICH2:Nemesis and Open MPI both offer similar
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(and irregular) bandwidth results. They are followed closely
by LAM/MPI, YAMPII, and MPICH2:sock, but these three
implementations show more regular results.

5 Conclusion and Future Work
In this paper, we presented Nemesis, a new message-

passing communication subsystem that is designed to be
low-latency and scalable. We presented its original de-
sign, based on a novel use of scalable and efficient lock-
free queues, that have enqueue and dequeue costs of 6 and
11 instructions, respectively. This communication subsys-
tem has been integrated into MPICH2 as an CH3 channel.
Our performance evaluation shows that Nemesis effectively
delivers low latency for small messages and high band-
width for large messages, both in intranode and internode
communication cases. We performed comparisons between
MPICH2 implemented using Nemesis and other MPI im-
plementations, and found that MPICH2 based on Nemesis
has better intranode latency for non-zero messages than all
other MPI implementations, and better intranode bandwidth
for messages larger than 256 KB than all other MPI imple-
mentations. For internode performance, MPICH2 based on
Nemesis performs comparably to, if not better than, the best
of the other MPI implementations over GM and TCP.

Since we worked only at the channel level and left the
ADI3 layer untouched, there is still room for improvement,
and we are currently working on a device version of Neme-
sis with a new progress engine. Indeed, the results are
promising because the instruction count for performing an
MPI_Recv operation is down to 300 instructions (roughly
60% less instructions compared to the count of Nemesis as
a channel), and we have reduced the latency by more than
20% (we achieve submicrosecond latency for messages up
to 64 bytes for instance). Nemesis has been designed as a
scalable channel in order to meet the requirements of large-
scale clusters, and shared-memory machines. Fault toler-
ance is a central issue in this context, and we have started
to develop and integrate checkpointing and restart mecha-
nisms within Nemesis. We also plan to perform more sig-
nificant tests with real computing kernels, such as HPL or
NAS.

We would like to assess the performance of our RMA
interface and evaluate the performance improvement at the
MPI level when exploiting this part of the Nemesis inter-
face. We also would like to explore Nemesis as a communi-
cation subsystem for environments other than MPI. GAS

languages could be an interesting and relevant target for
such work.
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